Jump to content

Leaderboard


Popular Content

Showing content with the highest reputation since 05/25/2024 in all areas

  1. 2 points
    Thom

    Weber 34 ADM needs refurb

    When I was 19 I had an xf wagon I got from the original owner, it had 60,000ks on it it was a 4.1 and was the slowest car I had ever driven (I even pulled the plugs and measured the stroke to make sure it was a 250 and not a 200) turns out it had a webber from a 3.3 on it previous owner swore black and blue the carb was original to the car, I put a webber off a 250 on it and it made a huge difference
  2. 2 points
    Tazvan

    Weber 34 ADM needs refurb

    The Weber is all back together with new gaskets and diaphragms and yes a new 2 stage idle switch... fitted it back on the motor and is running sweet!
  3. 1 point
  4. 1 point
    Tazvan

    Multimeter's

    It has also been removed, but wasn't a problem as the lid was closing and activating the switch correctly
  5. 1 point
    deankxf

    Multimeter's

    i haven't watch the video yet. but on an XF etc, always check the glove box light (i removed it to fix the issue, the switch is not up to a 10kg junk box on 2 hooks for hinges ) auto elec found it in 30 seconds, due to it's a common issue. (didn't charge Me, Legend)
  6. 1 point
    Thom

    Weber 34 ADM needs refurb

    It may have had other problems I wasn't as good with carbs back then, as much as I thought I was at the time, but you can learn a little bit in 15 years, I do remember it making a huge difference to that car at the time, it made as much of an improvement as putting an efi cam in it and swapping the auto for a t5
  7. 1 point
    Tazvan

    Weber 34 ADM needs refurb

    I read somewhere only 3.3's had the PTC, but hey it seems there are exceptions sometimes, and anything may have been done in warranty scenarios...
  8. 1 point
    XF EDDIE

    86 XF Falcon Ute not starting

    I also pulled the egr and it made no difference. Still gona pull the downpipe off as the thing now runs so bad that it stalls when you put the headlights on
  9. 1 point
    deankxf

    86 XF Falcon Ute not starting

    should film it from far away, will be some mighty noises and flames if you unbolt it from the head and run it.
  10. 1 point
    XF EDDIE

    86 XF Falcon Ute not starting

    I might just try it with open manifold and see if that fixes it. Ill report back with what happens.
  11. 1 point
    Tazvan

    Multimeter's

    Yep, same for me, only attempted my own wheel alignments in recent years as the blokes I have gone to for the last 25+ years have closed down...
  12. 1 point
    deankxf

    Multimeter's

    I have done same with ignition timing and even wheel alignments in the past, but i've also got it very wrong before also.
  13. 1 point
    Tazvan

    Multimeter's

    My current multimeter has a rev counter and used it to check my XF when Weber went back on, my ears set it correctly
  14. 1 point
    Tazvan

    Weber 34 ADM needs refurb

    The Weber I removed from the XE 3.3 motor has throttle plates that open up fully...?? and doesn't have a PTC heater basket under it...?
  15. 1 point
    Tazvan

    Weber 34 ADM needs refurb

    Well I did a bit of looking and worked out my van is; "N" Engine- 4.1 "N" Trans- 3 speed column manual My Factory Ford XF Repair manual doesn't have N listed, but when I collected my new 2 stage switch he mentioned how the 3.3 carb only opened the secondary throttle plate to 3/4 open, which mine does... This page from Mr Polson's Weber thread, lists it as a 4.1 manual, but maybe that is more specific to XE ?
  16. 1 point
    deankxf

    86 XF Falcon Ute not starting

    head gasket will be constant, lifter won't affect it much in my opinion (i've had wiped ones, and they go ok on 5cyls) blocked exhaust (cat) is still plauisble. find another? see if you can get an exhaust joint to make a "leaded" engine pipe replacement for it (tell em you've fitted the unleaded exhaust off your other car for example, or even you want it for testing/faults) (i'd expect $150 odd ?)
  17. 1 point
    SPArKy_Dave

    Weber 34 ADM needs refurb

    From memory, 'UE', denotes a 3.3L Manual carb.
  18. 1 point
    XF EDDIE

    86 XF Falcon Ute not starting

    I tried to hollow out the cat but it was so tough that even a socket extension barely broke it so I gave up however I drove it hard again and like before it ran perfectly for about a minute before going back to the way it was before. What could this be lifter? Head gasket? It's got me puzzled
  19. 1 point
    deankxf

    X FILES

    unsure if this is a legit reply, but it's wrong if so
  20. 1 point
    SPArKy_Dave

    X FILES

    and AI
  21. 1 point
    deankxf

    X FILES

    The truth is out there, but so are lies.
  22. 1 point
    deankxf

    86 XF Falcon Ute not starting

    i reckon it will be the cat, broken. it's like a light weight rock, it can get blown into a blockage and then when low air speed (idle) just fall back enough to rattle around. (that's what one of mine in particular was like when i bought the car) there's other things that can rattle when there's issues, and one of the most unusual ones was a FLEXPLATE with rivetted on ring gear and the rivets were loose/flogged out
  23. 1 point
    Adrian853

    Converting to EFI Fuel Tank

    Cheers all, wondered if the 4 small lines were something to do with emissions / fuel vapour. Will block those off. I’ve cleaned up the EFI tank as best I can and put a Walbro 255lph pump in there… Before: After: Sent from my iPhone using Tapatalk
  24. 1 point
    deankxf

    It's stock, Officer... I swear

    I think this isn't even from that engine? (from many years ago)
  25. 1 point
    Your Falcon is stalling/dieing or sputtering when hot but runs when it cools off. This can be caused by a faulty TFI and the biggest culprits are heat. Another culprit can be a wire grounding out. Problematic TFI's can give off codes 14 (PIP) and 18 (SPOUT).o To start with, here are some links you may find helpful: TFI Worksheet (Strongly recommend you print this worksheet) TFI Remote Mounting Ford TFI Module Litigation Settlement Quick Checks Technical Service Bulletins (TSBs) pertaining to the ignition system: TFI Stall NO Start - TFI Module Diagnosis and Sealing: This bulletin addresses loss of module ground due to salt and moisture entering a module mounting screw. TFI Engine NO Start/Stall at Idle - New Ignition Module: This TSB talks about an internal short-circuit in some model TFI modules. Driveability Concerns - Moist EEC-IV Connectors: This bulletin asks the tech to check for unsealed EEC-IV connectors and check for moisture or corrosion. Wiring: Always check your wiring. Here is a picture of SPOUT (Spark Output signal) wire that was grounding out. The yellow spark output signal wire is without a section of insulation. This section happens to run through a shield ground that provided a convenient ground source for the SPOUT signal. Just the right bump in the road or vibration from the engine would provide a path of lesser resistance for the SPOUT signal, killing the coil trigger. This is where the TFI Modile plugs in to the distributor to get the PIP signal. Notice the defective insulation. Heat Is Your Enemy!: The top three leads (for PIP signal) can lose continuity with the back plate (ground) on the module when the unit is hot. You should consider a remote mounted TFI. If your TFI is failing from heat, it can give off computer codes 14 (PIP) and 18 (SPOUT). General Information The TFI-IV distributor ignition system consists of the following components: Thick Film Ignition (TFI) modules Distributor Camshaft Position (CMP) sensor Ignition coil The distributor ignition system designed by Ford has two distinct configurations. The first configuration is known as the distributor mounted system, because the TFI is mounted directly on the distributor housing. The second configuration is known as a remote mount system, since the TFI is mounted on the engine or front fender apron. The distributor used by this system is sealed and houses the CMP sensor. The distributor does not utilize vacuum or centrifugal advance mechanisms; the ignition timing is automatically controlled by the Powertrain Control Module (PCM) and the TFI. Ford calls this electronic ignition the Thick Film Integrated-IV (TFI-IV) ignition system. The TFI module is also known as the Ignition Control Module (ICM) which reports engine position and rpm to the PCM. The PCM then determines the proper spark timing and advance, and returns a reference signal to tell the TFI module to switch the coil, thereby by creating a spark. The PCM used on these vehicles is referred to by Ford as the Electronic Engine Control-IV (EEC-IV) module. System Operation The CMP sensor, housed inside the distributor, responds to a rotating metallic shutter mounted on the distributor shaft. This rotating shutter produces a digital Profile Ignition Pick-up (PIP) signal, which is used by the PCM and TFI to provide base timing information, determine engine speed (rpm) and crankshaft position. The distributor shaft rotates at one-half crankshaft speed, therefore the shutter rotates once for every two crankshaft revolutions. The TFI functions in either one of two modes: push start or Computer Controlled Dwell (CCD). The push start mode allows for increased dwell, or coil on time, when starting the engine. During this mode, the TFI determines when to turn on the ignition coil based on engine speed information. The coil is turned off, thereby firing, whenever a rising edge of a SPark OUTput (SPOUT) signal is received. The SPOUT signal is generated by the PCM, and provides spark timing information to the TFI. During the push start mode, the SPOUT signal only indicates the timing for coil firing; the falling edge of the SPOUT signal is ignored. Despite the name, the push start mode is also enabled during engine starting with the ignition key. Do not attempt to push start a vehicle equipped with an automatic transmission. The rotary armature has open areas called windows and tabs called vanes The vane interrupts the magnetic field passing through the Hall effect device During the CCD mode, both edges of the SPOUT signal are utilized. The leading edge of the SPOUT signal is used by the ICM in the same manner as during the push start mode. The falling edge of the signal is generated to control the timing for turning the ignition coil on (the TFI no longer controls this function as during the push start mode). During the CCD mode, the coil on time, or dwell, is entirely controlled by the PCM through the SPOUT signal. In the event that the SPOUT signal from the PCM is disrupted, the TFI will use the PIP signal from the CMP to fire the ignition coil, which results in a fixed spark angle and dwell. Diagnosis & Testing Service Precautions Always turn the key OFF and isolate both ends of a circuit whenever testing for shorts or continuity. Never measure voltage or resistance directly at the processor connector. Always disconnect solenoids and switches from the harness before measuring for continuity, resistance or energizing by way of a 8-volt source. When disconnecting connectors, inspect for damaged or pushed-out pins, corrosion, loose wires, etc. Service if required. Preliminary Checks Visually inspect the engine compartment to ensure that all vacuum lines and spark plug wires are properly routed and securely connected. Examine all wiring harness and connectors for insulation damage, burned, overheated, loose or broken conditions. Ensure that the TFI is securely fastened to the front fender apron. Be certain that the battery is fully charged and that all accessories are OFF during the diagnosis. Test Procedures Perform the test procedures in the order in which they are presented here. Ignition Coil Secondary Voltage Test Coil Voltage Test #1 - Crank Mode 1 - Connect a spark tester between the ignition coil wire and a good engine ground. 2 - Crank the engine and check for spark at the tester. 3 - Turn the ignition switch OFF. 4 - If no spark occurs, check the following: a. Inspect the ignition coil for damage or carbon tracking. b. Check that the distributor shaft is rotating when the engine is being cranked. c. If the results in Steps a and b are okay, go to Test #4. 5 - If a spark did occur, check the distributor cap and rotor for damage or carbon tracking. Go to the Coil Voltage Test #2. Coil Voltage Test #2 - Run Mode 1 - Fully apply the parking brake. Place the gear shift lever in Neutral (manual transmission) or Park (automatic transmission). CAUTION - Failure to perform this step may result in the vehicle moving when the starter is subsequently engaged during the test. 2 - Disconnect the S terminal wire at the starter relay. Attach a remote starter switch. 3 - Turn the ignition switch to the RUN position. 4 - Using the remote starter switch, crank the engine and check for spark. 5 - Turn the ignition switch OFF. 6 - If no spark occurred, the problem lies with the wiring harness. Inspect the wiring harness for short circuits, open circuits and other defects. Go to Test #3. 7 - If a spark did occur, the problem is not in the ignition system. Wiring Harness Test #3 - Voltage Check 1 - Separate wiring harness connector from ignition module. Inspect for dirt, corrosion and damage. NOTE: Push connector tabs to separate. 2 - Verify that the wire to the S terminal of starter relay is disconnected. 3 - Attach negative (-) VOM lead to distributor base. 4 - Measure battery voltage. 5 - Following the appropriate table below, measure connector terminal voltage by attaching VOM to small straight pin inserted into connector terminal and turning ignition switch to position shown. CAUTION - Do not allow straight pin to contact electrical ground. TFI Without CCD Connector Terminal Wire / Circuit Ignition Switch Test Position #3 Run Circuit Run and Start #4 Start Circuit Start TFI With CCD Connector Terminal Wire / Circuit Ignition Switch Test Position #3 Run Circuit Run and Start 6 - Turn ignition switch to Off position. 7 - Remove straight pin. 8 - Reconnect wire to S terminal of starter relay. 9 - Was the value at least 90 percent of battery voltage in each case? a. - If yes, replace TFI module. b. - If no then: 1 - Inspect for faults in wiring harness and connectors. 2 - Check for damaged or worn ignition switch. Distributor Hall Effect Test #4 1 - Place the transmission shift lever in the Park position (A/T) or Neutral (M/T) position and set the parking brake. CAUTION - Failure to perform this step may result in the vehicle moving when the starter is subsequently engaged during the test. 2 - Disconnect the harness connector from the TFI module and connect the TFI tester. 3 - Connect the red lead from the tester to the (+) positive side of the battery. 4 - Disconnect the wire at the S terminal of the starter relay and attach remote starter switch. 5 - Crank the engine using the remote starter switch and note the status of the two LED lamps. 6 - Remove the tester and remote starter switch. 7 - Reconnect the wire to the starter relay and the connector to the TFI. 8 - Did the PIP light blink? a. - If Yes, go to Test #6. b. - If No, remove distributor cap and verify rotation. If OK, go to Test #5. TFI Module Resistance Test #5 1 - Remove the TFI from the distributor or the front fender apron. 2 - Measure the resistance between the TFI terminals as shown below: a. - GND-PIP IN: should be greater than 60 ohms. b. - PIP PWR-PIP IN: should be less than 2,000 ohms. c. - PIP PWR-TFI PWR: should be less than 200 ohms. d. - GND-IGN GND: should be less than 2 ohms. e. - PIP IN-PIP: should be less than 200 ohms. 3 - If any of these checks failed, replace the TFI with a new one. TFI Module Test #6 1 - Use status of Tach light from Test #4. If Yes then go to Test #7. 2 - Did the Tach light blink? If No, replace TFI module and check for spark using the method described in Test #1. If spark was not present, replace the coil also. System Test #7 1 - Disconnect the pin-in-line connector near the TFI. 2 - Crank the engine 3 - Turn the ignition switch OFF. 4 - If a spark did occur, check the PIP and ignition ground wires for continuity. If okay, the problem is not in the ignition system. 5 - If no spark occurs, check the voltage at the positive (+) terminal of the ignition coil with the ignition switch in RUN. 6 - If the reading is not within battery voltage, check for a worn or damaged ignition switch. 7 - If the reading is within battery voltage, check for faults in the wiring between the coil and TFI module terminal No. 2 or any additional wiring or components connected to that circuit. Spark Timing Advance Test #8 Spark timing advance is controlled by the EEC system. This procedure checks the capability of the ignition module to receive the spark timing command from the EEC module. The use of a volt/ohmmeter is required. 1 - Turn the ignition switch OFF. 2 - Disconnect the pin-in-line connector (SPOUT connector) near the TFI module. 3 - Start the engine and measure the voltage, at idle, from the SPOUT connector to the distributor base. The reading should equal battery voltage. 4 - If the result is okay, the problem lies within the EEC-IV system. 5 - If the result was not satisfactory, separate the wiring harness connector from the ignition module. Check for damage, corrosion or dirt. Service as necessary. 6 - Measure the resistance between terminal No. 1 and the pin-in-line connector. This test is done at the ignition module connector only. The reading should be less than 1 ohms. 7 - If the reading is okay, replace the TFI module. 8 - If the result was not satisfactory, service the wiring between the pin inline connector and the TFI connector. Our Old Testing Procedure STEP 1 Determine if the engine is getting fuel. If injector is fueling chances are the TFI electronics are ok. If the electronics fail the fuel system shuts down except for about 20 seconds of start of cranking. If no fueling or if it quits after 20 seconds of cranking go to step 2. STEP 2 Check for spark at one of the spark plugs. If spark is found, you may have a fuel system problem. If spark is not found, check for spark at the coil wire. If you have spark, you may have a bad rotor, cap, or wires. If you still have no spark, unplug the harness at the TFI module. With key off, there should be no voltage present at any terminals of the harness. With key in the run position there should be voltage at the "TFI POWER RUN" and the "TACH IDM (COIL NEGATIVE)" terminals. Pull the small wire off the starter solenoid so engine will not crank. Have an assistant try to crank the engine. There should be voltage at "TFI POWER RUN, TFI POWER CRANK (START SIGNAL IN), and TACH IDM (COIL NEGATIVE)" terminals. If there is not voltages present, there is a possible wiring problem. If voltages are ok, go to step 3. STEP 3 With coil wire removed to watch for spark, place ignition key in the run position. Momentarily touch a jumper wire from "TACH IDM (COIL NEGATIVE)" terminal of the harness to a good ground. Spark should jump every time the jumper is grounded. Do not ground the jumper for more that a couple of seconds. If no spark is found, make sure that with the key in the run position there is voltage at one of the coil terminals. If voltage is present, the coil may be bad, go to step 4. If spark is found, the problem may be the TFI module or the PIP (profile ignition pickup or reluctor in the distributor) so go to step 5. STEP 4 We should now test the coil. Use an ohm meter and probe the resistance of the two small terminals, and you should find 0.3 to 1.0 ohm. If the resistance is not ok, it may be a bad coil. If the resistance is ok, probe one small terminal and the coil wire terminal. Resistance should be 8000 to 11,500 ohms. If the resistance is not ok, replace coil. If the resistance is ok, go to step 5. STEP 5 Testing the pickup coil (PIP) in the distributor is not an easy task, and best to test the TFI module first, then replace the pickup coil (PIP) if the TFI module tests ok. I have seen very few pickup coils on Ford TFI systems go bad. Test the TFI module according to the chart below. These values may be valid only on an OEM module, but may apply to aftermarket. TFI Terminals to jump Resistance (OHMS) HALL EFFECT GROUND HALL EFFECT POWER PIP PIP out 12.8K 1.2K 100 SPOUT in 17.4K 5.8K 4.7K START SIGNAL in 1000 12.6K 13.7K RUN POWER in 11.5K 100 1200 COIL NEGATIVE 4.2K 15.8K 16.9K IGNITION GROUND 0.0 11.6K 12.7K HALL EFFECT POWER 11.5K PIP 12.6K 1100 DISTRIBUTOR BASE 0.0K 12K 13.1K
This leaderboard is set to Melbourne/GMT+10:00
×